Nanoscale III-V Electronics: InGaAs FinFETs and Vertical Nanowire MOSFETs

J. A. del Alamo, X. Zhao, W. Lu, A. Vardi and X. Cai

Microsystems Technology Laboratories

Massachusetts Institute of Technology

IEEE Nanotechnology Materials and Devices Conference

Portland, OR, October 14-17, 2018

Acknowledgements:

- Students and collaborators: D. Antoniadis, E. Fitzgerald, J. Grajal, J. Lin
- Sponsors: Applied Materials, DTRA, Intel, KIST, Lam Research, Northrop Grumman, NSF, Samsung, SRC
- Labs at MIT: MTL, EBL

Evolution of transistor structure for improved scalability

Enhanced gate control \rightarrow improved scalability

Moore's Law: The Problem

Current density of n-MOSFETs at nominal voltage:

Scaling: Voltage $\downarrow \rightarrow$ Current density $\downarrow \rightarrow$ Performance \downarrow

III-V CMOS: The Promise

Source injection velocity: Si vs. InGaAs

v_{inj}(InGaAs) > 2v_{inj}(Si) at less than half V_{DD}
→ high current at low voltage

Evolution of transistor structure for improved scalability

Enhanced gate control \rightarrow improved scalability

n-MOSFETs in Intel's nodes at nominal voltage

"Comparisons always fraught with danger..."

n-MOSFETs in Intel's nodes at nominal voltage

• InGaAs stagnant for a long time

n-MOSFETs in Intel's nodes at nominal voltage

- Rapid recent progress → Atomic Layer Deposition
- InGaAs exceeds Si

n-MOSFETs in Intel's nodes at nominal voltage

Lin, IEDM 2014, EDL 2016

- Rapid recent progress → Atomic Layer Deposition
- InGaAs exceeds Si

Evolution of transistor structure for improved scalability

Enhanced gate control \rightarrow improved scalability

FinFET: large increase in current density per unit footprint over planar MOSFET

Best InGaAs FinFETs nearly match 14 nm Si MOSFETs

10 nm node Si MOSFETs: a great new challenge!

InGaAs FinFETs @ MIT

Key enabling technologies: BCl₃/SiCl₄/Ar RIE + digital etch

- Sub-10 nm fin width
- Aspect ratio > 20
- Vertical sidewalls

Vardi, DRC 2014, EDL 2015, IEDM 2015

InGaAs FinFETs @ MIT

- Si-compatible process
- Contact-first, gate-last process
- Fin etch mask left in place → <u>double-gate MOSFET</u>

g_{m,max}=565 μS/μm (V_{DS}=0.5 V)

Vardi, IEDM 2017

W_f scaling of OFF-state characteristics

- Excellent subthreshold swing scaling behavior
- From long L_g devices: $D_{it} \sim 8 \times 10^{11} \text{ cm}^{-2}.\text{eV}^{-1}$

Vardi, IEDM 2017

W_f scaling of ON-state characteristics

0

W_f [nm]

•

DC underestimates transistor potential!

g_m frequency dispersion

Pulsed vs. DC

InGaAs Vertical Nanowire MOSFETs

Vertical NW MOSFET:

- \rightarrow ultimate scalable transistor
- \rightarrow uncouples footprint scaling from L_q, L_{spacer}, and L_c scaling

InGaAs Vertical Nanowires on Si by direct growth

Selective-Area Epitaxy (SAE)

InAs NWs on Si by SAE

Riel, MRS Bull 2014, IEDM 2012

VNW MOSFETs: path for III-V integration on Si for future CMOS

InGaAs VNWs by top-down approach

Key enabling technologies: $BCI_3/SiCI_4/Ar RIE + digital etch$ DE = O_2 plasma oxidation + acid-based oxide removal

RIE + 5 cycles DE

Zhao, EDL 2014

Radial etch rate = 1 nm/cycle

Towards D<10 nm InGaAs VNWs

RIE down to D~20 nm + multiple cycles of DE

8 nm InGaAs VNWs after 7 DE cycles:

10% HCl in DI water, Yield = 0%

Lu, EDL 2017

Towards D<10 nm InGaAs VNWs

RIE down to D~20 nm + multiple cycles of DE

8 nm InGaAs VNWs after 7 DE cycles:

10% HCl in DI water, Yield = 0%

Solution: alcohol-based digital etch

Lu, EDL 2017

Water-based acid is problem:

Surface tension (mN/m):

- Water: 72
- Methanol: 22
- IPA: 23

Towards D<10 nm InGaAs VNWs

RIE down to D~20 nm + multiple cycles of DE

8 nm InGaAs VNWs after 7 DE cycles:

Broken NWs

10% HCl in DI water, Yield = 0%

10% HCl in IPA, Yield = 97%

Lu, EDL 2017

Alcohol-based DE key for D < 10 nm

D=5.5 nm InGaAs VNW arrays

 $10\% H_2SO_4$ in methanol

90% yield

Lu, EDL 2017

- H₂SO₄:methanol yields 90% at D=5.5 nm!
- Viscosity matters: methanol (0.54 cP) vs. IPA (2.0 cP)

D=5 nm InGaAs VNW

Aspect Ratio > 40

Lu, EDL 2017

InGaAs VNW-MOSFETs by top-down approach @ MIT

Top-down approach: flexible and manufacturable

III-V VNW MOSFET process flow

D=7 nm InGaAs VNW MOSFET (Ni contact)

Output characteristics vs. D (source up)

Source up:

As D↓:

- Ni contact becomes Schottky
- Mo contact opens up

Zhao, TED 2018

Sidewall MOS interface quality

Subthreshold swing vs. electrostatic aspect ratio of channel:

Poor MOS interface at sidewall

Benchmark with Si/Ge VNW MOSFETs

Peak g_{m} (V_{DS}=0.5 V) vs. S_{sat} of InGaAs VNW MOSFETs

Excellent combination of on-and off-state characteristics

Benchmark with Si/Ge VNW MOSFETs

Peak g_m of InGaAs (V_{DS}=0.5 V), Si and Ge VNW MOSFETs

InGaAs competitive with Si [hard to add strain]

InGaAs/InAs VNW Tunnel FETs @ MIT

InGaAs VNW-TFET

Single NW: D= 40 nm, L_{ch} = 60 nm, 3 nm Al_2O_3 (EOT = 1.5 nm)

- Saturated output characteristics
- Clear negative differential resistance
- Peak to valley ratio of 3.4 @ $V_{gs} = 0.6 V$

Zhao, EDL 2017

VNW-TFET subthreshold characteristics

- Sub-thermal for 2 orders of magnitude of current
 - S_{lin} = 55 mV/dec
 - S_{sat} = 53 mV/dec

Conclusions

- 1. Great recent progress on planar, fin and nanowire InGaAs MOSFETs
- 2. Device performance still lacking for 3D architecture designs

 \rightarrow severe oxide trapping masks true transistor potential

3. Vertical Nanowire MOSFET: ultimate scalable transistor; integrates well on Si

INTEGRATED MICROELECTRONIC DEVICES

J. A. del Alamo